

Current Sensor

Model Number:

CN1A 25 PB00

For the electronic measurement of voltage: DC, AC, pulsed..., with galvanic separation between the primary and the secondary circuit.

Features

- Closed loop (compensated) current sensor using the Hall Effect
- ♦ Galvanic separation between primary and secondary
- ♦ Insulating plastic case recognized according to UL94-V0
- ♦ Very good linearity
- ♦ High accuracy
- ♦ Very low offset drift over temperature
- ♦ No insertion loss
- ♦ Standards:
 - IEC 60664-1:2020
 - IEC 61800-5-1:2022
 - IEC 62109-1:2010

Applications

- ♦ AC variable speed and servo motor drives
- Uninterruptible Power Supplies (UPS)
- ♦ Static converters for DC motor drives
- ♦ Switch Mode Power Supplies (SMPS)
- ♦ Power supplies for welding applications
- ♦ Battery management
- ♦ Wind energy inverter
- ♦ Test and detection devices

Safety

This sensor must be used according to IEC61800-5-1.

This sensor must be used in electric/electronic equipment with respect to applicable standards and safety requirements in accordance with the following manufacture's operating instructions.

Caution, risk of electrical shock!

When operating the sensor, certain parts of the module can carry hazardous voltage (e.g., Primary busbar, power supply). Ignore this warning can lead to injury and/or cause serious damage.

This sensor is a built-in device, whose conducting parts must be inaccessible after installation. A protective housing or additional shield could be used

Main supply must be able to be disconnected.

Absolute maximum ratings(not operating)

Parameter	Symbol	Unit	Value
Supply voltage	V c	V	± 18

X Stress above these ratings may cause permanent damage.

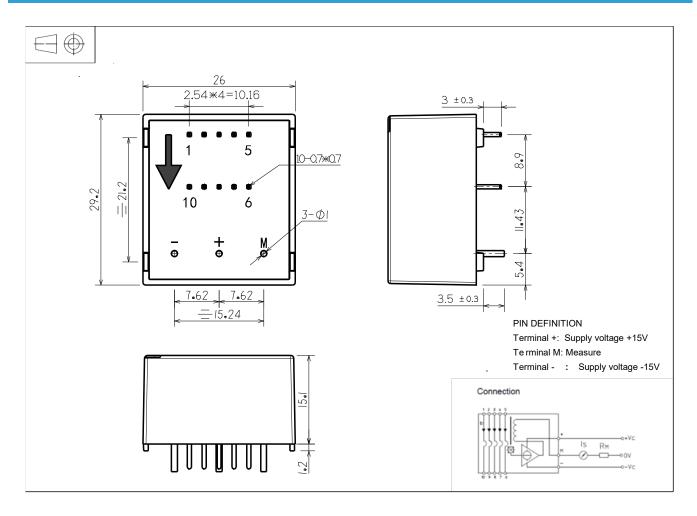
Environmental and mechanical characteristics

Parameter	Symbol	Unit	Min	Тур	Max	Comment
Ambient operating temperature	T _A	$^{\circ}$	-40		85	
Ambient storage temperature	<i>T</i> s	$^{\circ}$	-40		90	
Mass	m	g		23		

Insulation coordination

Parameter	Symbol	Unit	Value	Comment
Rms voltage for AC insulation test @ 50Hz,1min	V₀	kV	2.5	According to IEC 60664-1
Impulse withstand voltage 1.2/50µs	V _W	kV	9	
Insulation resistance	R is	МΩ	1500	@500V, 7 _A =25℃
Plastic case	-	-	UL94-V0	
Clearance (pri sec.)	d c₁	mm	10.6	
Creepage distance (pri sec.)	d _{Cp}	mm	10.6	
Comparative traking index	СТІ	PLC	3	
Application example	-	-	600V	Reinforced insulation,according to IEC 61800-5-1, IEC 62109-1CAT Ⅲ , PD2
Application example	-	-	1700V	Basic insulation,according to IEC 61800-5-1, IEC 62109-1CAT Ⅲ, PD2

X Exposure to absolute maximum ratings for extended periods may degrade reliability.


Electrical data

With T_A = 25°C, V_C = ±15V, R_L = 150Ω,unless otherwise noted.

Parameter	Symbol	Unit	Min	Тур	Max	Comment
Primary nominal rms current	/ PN	At		±25		
Maximum measuring current	/ PM	At	-36		36	
	R _M	Ω	100		320	@70℃, ±25At
Measuring resistance			100		315	@85℃, ±25At
Wododing resistance			100		190	@70℃, ±36At
			100		185	@85℃, ±36At
Primary resistance (each coil)	R₽	mΩ			1.25	@ 25 ℃
Secondary coil resistance	R s	Ω		115		@ 85℃
Output nominal rms current	/ SN	mA		±25		
Supply voltage	V c	٧		±15		@ ±5%
Coil turn ratio	K N	-	1-2-3-4-5:1000			
Current consumption	<i>l</i> c	mA		10 + /s		
Zero offset current	<i>l</i> o	mA	-0.15	±0.05	0.15	
Thermal drift of offset current	/ от	mA	-0.5	±0.15	0.5	@ -25℃~85℃
Thermal drift of offset current			-1.2	±0.30	1.2	@ -40℃~85℃
Residual current@ $I_P=0$ after $3 \times I_{PN}$	/ ом	mA	-0.15	±0.05	0.15	
Sensitivity error	$\mathcal{E}_{ extsf{G}}$	%	-0.3		0.3	
Linearity error	\mathcal{E}_{L}	% of /PN	-0.2		0.2	Exclusive of I _O
Accuracy@I _{PN}	Χ	% of ∕ _{PN}	-0.5		0.5	Exclusive of I _O
Response time@90% of IPN	t r	μs			1	@ di/dt=100A/s
Frequency bandwidth(-1dB)	BW	kHz	150			

Dimensions (in mm. 1 mm = 0.0394 inch)

Primary	Prim	Primary current Norminal		Primary resistance		Primary inductance	
turns	Nominal current	Max. current	output current	KN (mQ)		Ĺ _P (μΗ)	Connection way
1	25	36	25	1 / 1000	0.3	0.023	5 4 3 2 1 IN
2	12	18	24	2 / 1000	1.1	0.09	5 4 3 2 1 IN 0-0 0-0-0 0-0 0-0-0 OUT 6 7 8 9 10
3	8	12	24	3 / 1000	2.5	0.21	5 4 3 2 1 IN 0-0 0-0 0-0 0-0 OUT 6 7 8 9 10
4	6	9	24	4 / 1000	4.4	0.37	5 4 3 2 1 IN 0 0 0 0 0 OUT 6 7 8 9 10
5	5	7	25	5 / 1000	6.3	0.58	5 4 3 2 1 IN 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Mechanical characteristics

♦ General tolerance

±0.3 mm

♦ Primary connecting pin

10 pins 0.7×0.7mm

♦ Secondary signal connecting pin

3 pins Φ1mm

♦ Recommended PCB hole

Ф1.2

Remarks

- \Leftrightarrow $I_{\rm S}$ is positive when the measured electric current flows from 1,2,3,4,5 to 10,9,8,7,6.
- This is a standard model. For different applications(measurement, secondary connections...), please contactCHIPSENSE.